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Abstract In this article we discuss the conditions required to guarantee the non-emptiness
and the boundedness of certain subsets of the set of Lagrange multipliers for an inequality
and equality constrained vector minimization problem.

1 Introduction and motivation

In this article we will be concerned with the following vector minimization problem (VP)

min f (x) = ( f1(x), . . . , fm(x)),

subject to gi (x) ≤ 0, i = 1, . . . , k,

hr (x) = 0, r = 1, . . . , p,

where f : R
n → R

m , each gi : R
n → R and each hr : R

n → R. We will consider only
two different assumptions on the objective and constraint functions. Either we assume that
the objective and constraint functions of the problem (VP) are smooth, i.e. continuously
differentiable or we assume that all the functions are locally Lipschitz which need not be
differentiable. For simplicity in the presentation let us mark the index sets of the objective and
constraint functions as follows. Let M = {1, . . . , m}, K = {1, . . . , k} and P = {1, . . . , p}. It
is now well known that there are several solution concepts for a vector minimization problem.
Most important among them is the notion of a Pareto minimum point or an efficient point.
Let x̄ be a feasible point for (VP). Then x̄ is said to be a Pareto minimum if there exists no
other feasible point x of (VP) such that f (x)− f (x̄) ∈ −(Rm+ \{0}). This notion is important
both from the theoretical and practical point of view. Another notion called the weak Pareto
minimum is studied mostly from the theoretical point of view. A point x̄ is said to be a weak
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Pareto minimum for the program (VP) if there exists no other feasible x of (VP) such that
f (x) − f (x̄) ∈ −intRm+, where int denotes the interior of a set. It is clear that every Pareto
minimum is a weak Pareto minimum but the converse need not be true. Recently there has
been quite a few monographs dealing in detail with the mathematics of vector optimization.
The interested reader can see for example the recent monographs by Jahn [14], Göpfert et al.
[13] and Ehrgott [11] and the references there in. Of course one may also look at the earlier
monographs on this subject by Yu [23] and Luc [16].

Consider the program (VP) where the underlying data is smooth. Given a feasible point x̄
of (VP) by the term Karush–Kuhn–Tucker multiplier (KKT) at x̄ we mean a triplet (τ, λ, µ) ∈
R

m+ × R
k+ × R

p with τ �= 0 such that

(i)
∑

j∈M τ j∇ f j (x̄) + ∑
i∈K λi∇gi (x̄) + ∑

r∈P µr∇hr (x̄) = 0
(ii) λi gi (x̄) = 0, ∀i ∈ M .

For some recent studies on the Lagrange or KKT multipliers for multiobjective optimization
problems see for example Ciligot-Travain [7], Craven [9], Amahroq and Taa [1], Maeda [19,
20] and Chandra et al. [5].

The set of all KKT multipliers associated with x̄ is denoted as E(x̄). If we denote by I (x̄)

the set of active indices at x̄ then set E(x̄) is given as follows

E(x̄) =
{
(τ, λ, µ) ∈ (Rm+ \ {0}) × R

k+ × R
p:

∑

j∈M

τ j∇ f j (x̄) +
∑

i∈I (x̄)

λi∇gi (x̄)

+
∑

r∈P

µr∇hr (x̄) = 0, λi = 0, i �∈ I (x̄)
}
.

A careful look at the set E(x̄) will show that for any x̄ the set E(x̄) is unbounded. Observe
that for any (τ, λ, µ) ∈ E(x̄), the triplet (γ τ, γ λ, γµ) ∈ E(x̄) for any real number γ > 0.
On the other hand if we consider the set-valued map x �→ E(x) then the graph of E is closed.
However the unboundedness of the set of KKT multipliers is not a very desired property.
Gauvin [12] first demonstrated that the Mangasarian–Fromovitz constraint qualification (see
Mangasarian and Fromovitz [22]) is a necessary and sufficient condition for a mathemati-
cal programming problem (scalar optimization) with smooth data to have a bounded set of
Lagrange multipliers. Very recently Luskan et al. [17] have demonstrated the importance
of the boundedness of the Lagrange multipliers for the study of interior point methods for
non-linear programming. Anitescu [2] showed that even if the gradients of the constraints
evaluated at the solution point form a linearly dependent set one can develop a good algo-
rithm for constrained optimization if the Mangasarian–Fromovitz constraint qualification
holds, i.e. the Lagrange multilpiers or KKT multipliers are bounded. In fact Anitescu [2]
designed a sequential quadratic programmimg algorithm using an exact penalty function and
showed that one can have nice convergence results under Mangasarian–Fromovitz constraint
qualification. Further Anitescu [3] studied mathematical programming problems with only
inequality constraints and twice continuously differentiable data which have a non-empty and
unbounded Lagrangian multiplier set even though the problem satisfies a quadratic growth
condition. Mathematical programming with complementarity constraints or mathematical
programming with equilibrium constraints are natural candidates for having unbounded Lag-
range multiplier or KKT multiplier sets. This is preciesly due to the fact that for these class of
problems the Mangasarian–Fromovitz constraint qualification fails (see for example Dempe
[10] or Luo et al. [18]). Anitescu [3] demonstrated that by adding a linear penalty term to the
objective function one can transform the problem into an equivalent non-linear programming
problem that has a bounded KKT multiplier set.
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This motivates us to ask whether in the context of vector optimization we can iden-
tify certain subsets of the set E(x̄) which are non-empty and bounded under some natural
qualification conditions whenever x̄ is a Pareto minimum or a weak Pareto minimum for
(VP). We shall call such subsets of E(x̄) as the set of proper KKT multipliers at x̄ . More
precisely we will concentrate on the following subsets of E(x̄). For a given q ∈ M denote
by the set Eq(x̄) the set of all KKT multipliers for which τq = 1. Thus a typical element of
Eq(x̄) would look as follows

(τ1, . . . , τq−1, 1, τq+1, . . . , τm, λ1, . . . , λk, µ1, . . . , µp).

It is important to note that if we multiply an element of Eq(x̄) with a scalar γ > 0 then
the resulting element is not an element of Eq(x̄) since now τq = γ . Thus the set Eq(x̄) is
not closed under scalar multiplication by a positive real number while the set E(x̄) is closed
under such an operation.

Our main aim in this paper is to investigate the conditions under which the set Eq(x̄) is
non-empty and bounded. It is intuitive that one has to develop a suitable extension of the
Mangasarian–Fromovitz constraint qualification in context of the problem (VP). We will
consider the case when the underlying data of the problem (VP) is smooth and also when
the underlying data is locally Lipschitz which need not be differentiable. Thus even from the
view point of scalar optimization our results will be more general than Gauvin [12]. In fact
the sets of the type Eq(x̄) will be generically termed as the set of proper KKT multipliers.
Of course there can be more than one set of non-empty proper KKT multipliers. Chandra
et al. [5] studied the boundedness of the sets of proper KKT multipliers when (VP) consists
only of inequality constraints and only for the case of a Pareto minimum. Chandra et al. [5]
assumed the problem to have locally Lipschitz data. In this article we consider both equality
and inequality constraints as well as both Pareto minimum and weak Pareto minimum for
smooth and non-smooth cases.

The paper is planned as follows. In Section 2 we discuss the smooth case. We introduce the
required qualification condition and prove that there exists a set of proper KKT multipliers at
the solution point which is bounded. In Section 2 we only consider Pareto minimum points.
In Section 3 we define the regularity condition in the non-smooth setting and consider the
boundedness of the sets of proper KKT multipliers at the weak Pareto minimum points. In
both the sections we illustrate our results with examples.

2 Smooth case

In this section we assume that the underlying data of the problem (VP) is smooth i.e. the
components of the objective function and the constraints are continuously differentiable. We
begin with the following qualification condition associated with the problem (VP).

Definition 2.1 Let us consider the problem (VP) with smooth data. Let x̄ be a feasible point
of (VP). Then the Basic Regularity Condition is said to be satisfied at x̄ if there exists q ∈ M
such that the only scalars τ j ≥ 0, j ∈ M, j �= q, λi ≥ 0, i ∈ I (x̄), λi = 0, i �∈ I (x̄), µr ∈
R, r ∈ P which satisfy

∑

j∈M, j �=q

τ j∇ f j (x̄) +
∑

i∈K

λi∇gi (x̄) +
∑

r∈P

µr∇hr (x̄) = 0

are τ j = 0, for all j ∈ M, j �= q, λi = 0 for all i ∈ K and µr = 0 for all r ∈ P .

There may be more than one index q ∈ M for which the above property can be satisfied. How-
ever the definition says that we need to just check this for one index. Thus we may also state
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that the above property as Basic Regularity with respect to the index q. If the Basic Regularity
Condition (BRC) holds at x̄ then it is easy to observe that set of vector {∇h1(x̄), . . . , ∇h p(x̄)}
is linearly independent. Further if BRC holds at a given feasible point x̄ of (VP) then p < n.
Assume on the contrary that BRC holds at x̄ and p = n. Since {∇h1(x̄), . . . , ∇h p(x̄)} is
linearly independent the only solution for the system

〈∇hr (x̄), d〉 = 0, ∀r ∈ P

is d = 0. Thus for any q ∈ M the following system

〈∇ f j (x̄), d〉 < 0, j ∈ M, j �= q,

〈∇gi (x̄), d〉 < 0, i ∈ I (x̄),

〈∇hr (x̄), d〉 = 0, r ∈ P

has no solution.
Thus using Motzkin Theorem of the Alternative (see Mangasarian [21] Chapter 2) one can
show that there exists scalars τ j ≥ 0, j �= q, λi ≥ 0, i ∈ I (x̄), not all zero and µr ∈ R,
r ∈ P such that

∑

j∈M, j �=q

τ j∇ f j (x̄) +
∑

i∈K

λi∇gi (x̄) +
∑

r∈P

µr∇hr (x̄) = 0.

This clearly contradicts the fact that BRC holds at x̄ .

Theorem 2.1 Let us consider the problem (VP) with smooth data. Let x̄ be a Pareto minimum
for (VP). Further assume that BRC holds at the point x̄ . Then there exists a set of proper
KKT multipliers which is non-empty and bounded.

Proof Since BRC holds at x̄ there exists q ∈ M such that τ j ≥ 0, j ∈ M, j �= q, λi ≥
0, i ∈ I (x̄), λi = 0, i �∈ I (x̄), µr ∈ R, r ∈ P with

∑

j∈M, j �=q

τ j∇ f j (x̄) +
∑

i∈K

λi∇gi (x̄) +
∑

r∈P

µr∇hr (x̄) = 0,

implies that τ j = 0, for all j ∈ M, j �= q, λi = 0 for all i ∈ K and µr = 0 for all r ∈ P .
On the other hand since x̄ is a Pareto minimum point we know from Chankong and Haimes
[4] that x̄ is a solution to the following problem

min fq(x),

subject to f j (x) ≤ f j (x̄), j ∈ M, j �= q,

gi (x) ≤ 0, i ∈ K ,

hr (x) = 0, r ∈ P.

Thus by the Fritz John conditions we have scalars τq ≥ 0, τ j ≥ 0, j ∈ M, j �= q, λi ≥
0, i ∈ K and µr ∈ R, r ∈ P with

τq∇ fq(x̄) +
∑

j∈M, j �=q

τ j∇ f j (x̄) +
∑

i∈K

λi∇gi (x̄) +
∑

r∈P

µr∇hr (x̄) = 0, (1)

and

λi gi (x̄) = 0, ∀i ∈ K .
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Since BRC holds at x̄ it is immediate that τq > 0 and without loss of generality we can
consider τq = 1. Hence we have

(τ1, . . . , τq−1, 1, τq+1, . . . , τm, λ1, . . . , λk, µ1, . . . , µp) ∈ Eq(x̄).

Thus Eq(x̄) is non-empty. We now claim that Eq(x̄) is bounded. On the contrary assume that
it is unbounded. Observe that we can write (1) in a compact manner as

∇ fq(x̄) + J Fq(x̄)T y = 0, (2)

where

Fq(x̄) = ( f1(x̄), . . . , fq−1(x̄), fq+1(x̄), . . . , fm(x̄), g1(x̄), . . . , gk(x̄), h1(x̄), . . . , h p(x̄)),

and J Fq(x̄) denotes the Jacobian matrix of F at x̄ with T denoting the transpose of the matrix
and the vector y is given as

y = (τ1, . . . , τq−1, τq+1, . . . , τm, λ1, . . . , λk, µ1, . . . , µp).

If Eq(x̄) is unbounded then one can find a sequence {ys} where ys is given as

ys = (τ s
1 , . . . , τ s

q−1, τ
s
q+1, . . . , τ

s
m, λs

1, . . . , λ
s
k, µ

s
1, . . . , µ

s
p)

such that ‖ys‖ → +∞. Now consider the sequence {vs} with vs = ys

‖ys‖ . Hence from (2)

we have for each s

0 = 1

‖ys‖∇ fq(x̄) + J Fq(x̄)T vs .

Since {vs} is bounded it has a convergent subsequence converging to say v0 �= 0. Thus in
the limit we have

0 = J Fq(x̄)T v0.

This clearly contradicts the fact that BRC holds at x̄ with respect to q. Hence the result. �
Remark 2.1 It is clear from the above result that BRC is a natural qualification condition
for a Pareto minimum point. If x̄ is a Pareto minimum then the Chankong and Haimes [4]
scalarization criteria tells us that x̄ solves all problems of the form

min fq(x),

subject to f j (x) ≤ f j (x̄), j ∈ M, j �= q,

gi (x) ≤ 0, i ∈ K ,

hr (x) = 0, r ∈ P,

where q varies over M . Thus there are m scalar subproblems associated with the Chankong
and Haimes [4] criteria. From the discussion following the definition of BRC it is clear that
if x̄ is a Pareto minimum point of (VP) and if BRC holds x̄ then there is at least one scalar
subproblem of the above form for which the Mangasarian–Fromovitz constraint qualifica-
tion [22] holds. Moreover the converse is also true, i.e. if there is a scalar subproblem of the
above form for which the Mangasarian–Fromovitz constraint qualification holds at x̄ then
BRC holds for (VP) at x̄ . In the case when (VP) is a scalar problem i.e. m = 1 the above
theorem provides a much simpler proof than that of Gauvin [12].

However the existence of a proper KKT multiplier for (VP) at the Pareto minimum point
can in fact be guaranteed by a condition much weaker than that of BRC. We shall call this as
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the Basic Constraint Qualification (BCQ). The problem (VP) is said to satisfy the BCQ at a
feasible point x̄ if the only scalars λi ≥ 0, i ∈ I (x̄), λi = 0, i �∈ I (x̄) and µr ∈ R, r ∈ P
which satisfy

∑

i∈K

λi∇gi (x̄) +
∑

r∈P

µr∇hr (x̄) = 0

are λi = 0, i ∈ K and µr = 0 , r ∈ P .
It is clear that if BRC holds at x̄ then BCQ holds at x̄ too but the converse need not be true.
Thus BCQ is a weaker qualification condition than BRC. We provide below two examples.
The first example demonstrate that if BRC holds then we indeed have a set of proper KKT
multipliers which is bounded. The second example shows that all the sets of proper KKT
multipliers will be unbounded if BRC fails to hold even though BCQ holds.

Example 2.1 Consider the following vector optimization problem,

min( f1(x), f2(x)), subject to g(x) ≤ 0, h(x) = 0,

where f1, f2, g and h are real-valued functions on R3. The functions are given as follows

f1(x1, x2, x3) = x3
1 + x3,

f2(x1, x2, x3) = −x3,

g(x1, x2, x3) = −x1,

h(x1, x2, x3) = x3
1 + 2x2.

It is clear that (0, 0, 0) is an efficient point for the above vector program.
Consider the index j = 1. Let us now consider the expression

τ2∇ f2(0, 0, 0) + λ∇g(0, 0, 0) + µ∇h(0, 0, 0) = 0,

where τ2 ≥ 0, λ ≥ 0 and µ ∈ R. It is easy to show that the above equation holds only for
τ2 = 0, λ = 0 and µ = 0. Hence the BRC holds at (0, 0, 0).

Now let us consider the set of proper KKT multipliers E1((0, 0, 0)) given as

E1((0, 0, 0)) = {(1, τ2, λ, µ): (0, 0, 1) + τ2(0, 0,−1) + λ(−1, 0, 0) + µ(0, 2, 0) = 0}
= {(1, 1, 0, 0)}.

Thus it is clear that E1((0, 0, 0)) is bounded.

Example 2.2 Consider the following vector optimization problem,

min( f1(x), f2(x)), subject to g(x) ≤ 0, h(x) = 0,

where f1, f2, g and h are real-valued functions on R2 which are given as

f1(x) = x2
1 + x2

2 ,

f2(x) = −2x1x2,

g(x) = x1,

h(x) = x1 − x2.

Observe that the feasible set of this problem is the set {(u, u) ∈ R
2 : u ≤ 0}. Further observe

that every feasible point is a Pareto minimum. Let us consider the point x̄ = (0, 0). We will
first prove that BRC fails at (0, 0).



J Glob Optim (2006) 36:425–437 431

Consider j = 1 and let

0 = τ2∇ f2(0, 0) + λ∇g(0, 0) + µ∇h(0, 0)

= τ2(0, 0) + λ(1, 0) + µ(1, −1).

Then it is easy to observe that the above relation holds for all τ2 ≥ 0, λ = 0, µ = 0.
Now consider j = 2 and

0 = τ1∇ f1(0, 0) + λ∇g(0, 0) + µ∇h(0, 0)

= τ1(0, 0) + λ(1, 0) + µ(1, −1).

Again it is easy to observe that the above relation holds for τ1 ≥ 0, λ = 0, µ = 0. Thus it is
clear that BRC fails at (0, 0). However observe that BCQ holds at (0, 0) since the following
expression

0 = λ∇g(0, 0) + µ∇h(0, 0)

= λ(1, 0) + µ(1, −1),

holds only for λ = 0 and µ = 0.
Further it is easy to calculate the set of proper KKT multipliers at (0, 0) which are given as

E1((0, 0)) = {(1, τ2, λ, µ) : τ2 ≥ 0, λ = 0, µ = 0}
and

E2((0, 0)) = {(τ1, 1, λ, µ) : τ1 ≥ 0, λ = 0, µ = 0}.
Hence it is clear that the set of proper KKT multipliers are unbounded.

The above example in fact illustrates the following result whose simple proof is omitted.

Theorem 2.2 Let us consider the smooth problem (VP) with smooth data. Let x̄ be a feasible
point of (VP) for which there exists a set of proper KKT multipliers which is non-empty and
bounded then BRC holds at x̄ .

3 Non-smooth extensions

Throughout this section we will consider the problem (VP) with locally Lipschitz data, i.e
we will consider that the components of the objective function and the constraints are locally
Lipschitz. Our main tool in this section will be the Clarke generalized derivative and the
Clarke subdifferential of a locally Lipschitz function. For any given locally Lipschitz func-
tion φ : R

n → R and any x ∈ R
n the Clarke generalized derivative at x in the direction v is

denoted as φ◦(x, v) and the Clarke subdifferential of φ at x is denoted as ∂◦φ(x). For details
on the Clarke generalized derivative and the Clarke subdifferential see Clarke [8].

Now consider the problem (VP) with locally Lipschitz data and let x̄ be a feasible point for
(VP). Then by KKT multipliers of (VP) at x̄ we mean the triplet (τ, λ, µ) ∈ R

m+ × R
k+ × R

p

with τ �= 0 such that

0 ∈
∑

j∈M

τ j∂
◦ f j (x̄) +

∑

i∈K

λi∂
◦gi (x̄) +

∑

r∈P

µr∂
◦hr (x̄) (3)
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and

λi gi (x̄) = 0 ∀i ∈ K . (4)

Thus the set of KKT multipliers E(x̄) for the problem (VP) consists of all triplets
(τ, λ, µ) ∈ R

m+ × R
k+ × R

p with τ �= 0 such that (3) and (4) hold. For q ∈ M we shall
denote by Eq(x̄) the subset of E(x̄) whose every element has τq = 1. As before even in the
context of non-smooth vector optimization we will generically term the sets Eq(x̄) as the set
of proper KKT multipliers of (VP) at x̄ . As in the previous section our aim in this section
is to define a qualification condition which would guarantee the boundedness of the sets of
proper KKT multipliers. Apart from considering Pareto minimum points, in this section we
shall also look at the sets of proper KKT multipliers at weak Pareto minimum points.

Definition 3.1 Let us consider the problem (VP) with locally Lipschitz data. Let x̄ be feasi-
ble point of (VP). Then the Basic Regularity Condition (BRC) is said to be satisfied at x̄ if
there exists q ∈ M such that the only scalars τ j ≥ 0, j ∈ M, j �= q, λi ≥ 0, i ∈ I (x̄), λi =
0, i �∈ I (x̄), µr ∈ R, r ∈ P which satisfy

0 ∈
∑

j∈M, j �=q

τ j∂
◦ f j (x̄) +

∑

i∈K

λi∂
◦gi (x̄) +

∑

r∈P

µr∂
◦hr (x̄),

are τ j = 0, for all j ∈ M, j �= q, λi = 0 for all i ∈ K and µr = 0 for all r ∈ P .

The definition of BRC for a the problem (VP) with locally Lipschitz data was introduced
in Chandra et al. [5]. For more details on various constraint qualifications and regularity
conditions in multiobjective optimization see for example Li [15].

To motivate the results in this section we begin with an example showing that if BRC fails
at a Pareto minimum point, then every set of proper KKT multipliers can be unbounded.

Example 3.1 Consider the following vector optimization problem,

min( f1(x), f2(x)), subject to g(x) ≤ 0, h(x) = 0,

where f1, f2, g and h are real-valued functions on R
2.

f1(x1, x2) =
{

x1 : x1 ≥ 0,

x2
1 + x2

2 : x1 < 0.
f2(x1, x2) =

{
x3

2 : x2 ≥ 0,

0 : x2 < 0.

g(x1, x2) =
{

x1 + x2 : x1 + x2 ≥ 0,

x1 + 1 : x1 + x2 < 0.

and

h(x1, x2) = x1 − x2.

Note that the point x̄ = (0, 0) is an efficient point. The Clarke subdifferentials of the
functions are given as follows

∂◦ f1(0, 0) = {(ξ1, ξ2) : 0 ≤ ξ1 ≤ 1, ξ2 = 0},
∂◦ f2(0, 0) = {(0, 0)},
∂◦g(0, 0) = {(ξ1, ξ2) : ξ1 = 1, 0 ≤ ξ2 ≤ 1},
∂◦h(0, 0) = {(1,−1)}.
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We will now demonstrate that the BRC fails at (0, 0). Observe first that g is active at (0, 0).
Now consider j = 1. Take any τ2 > 0 , λ = 0 and µ = 0. Then observe that

(0, 0) = τ2(0, 0) + λ(1, 1) + µ(1, −1) ∈ τ2∂
◦ f2(0, 0) + λ∂◦g(0, 0) + µ∂◦h(0, 0).

Now consider j = 2. Take any τ1 > 0 , λ = 0 and µ = 0. Then observe that

(0, 0) = τ1(0, 0) + λ(1, 1) + µ(1, −1) ∈ τ1∂
◦ f1(0, 0) + λ∂◦g(0, 0) + µ∂◦h(0, 0).

Hence it is clear that BRC does not hold. Now it is easy to see that

E1((0, 0)) = {(1, τ2, λ, µ) : τ2 ≥ 0, λ = 0, µ = 0}
and

E2((0, 0)) = {(τ1, 1, λ, β) : τ1 ≥ 0, λ = 0, µ = 0}.
Hence all the proper KKT multiplier sets are unbounded.

Now we will turn to the case of the weak Pareto minimum by assuming that the underlying
data in (VP) is locally Lipschitz.

Theorem 3.1 Let us consider the problem (VP) where each f j , j ∈ M, each gi , i ∈ K and
each hr , r ∈ P are locally Lipschitz functions. Let x̄ be a weak Pareto minimum for (VP).
Assume that the Basic Regularity Condition holds at x̄ . Then there exists a set of proper KKT
multipliers for (VP) at x̄ which is non-empty and bounded.

Proof Since x̄ is a weak minimum for (VP) then it is easy to show that x̄ solves the
following scalar problem

min F(x) subject to hr (x) = 0, r ∈ P,

where F(x) = max{ f1(x)− f1(x̄), . . . , fm(x)− fm(x̄), g1(x), . . . , gk(x)}. If not then there
exists y ∈ R

n such that F(y) − F(x̄) < 0 and hr (y) = 0 for all r ∈ P . Further observe that
since x̄ is a weak Pareto minimum for (VP) then gi (x̄) ≤ 0 for all i ∈ K . This shows that
F(x̄) = 0. Hence we have F(y) < 0. This shows that y is feasible for (VP) and thus the
weak Pareto minimality of x̄ is contradicted. Hence using Theorem 6.2.1 in Clarke [8] we
have that there exist scalars τ0 ≥ 0 and µr ∈ R

p , not all zero such that

0 ∈ τ0∂
◦F(x̄) +

∑

r∈P

µr∂
◦hr (x̄). (5)

From Proposition 2.3.12 in Clarke [8] we have that

∂◦F(x̄) ⊆ co









⋃

j∈M

∂◦ f j (x̄)




⋃




⋃

i∈I (x̄)

∂◦gi (x̄)









.

Thus using (5) we can conclude that there exist scalars τ j ≥ 0, j ∈ M , λi ≥ 0, i ∈ K and
µr ∈ R such that

0 ∈
∑

j∈M

τ j∂
◦ f j (x̄) +

∑

i∈K

λi∂
◦gi (x̄) +

∑

r∈P

µr∂
◦hr (x̄) (6)

and

λi gi (x̄) = 0, ∀i ∈ K .
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Now since BRC holds there exists an index q ∈ M such that the only scalars τ j ≥ 0, j ∈
M, j �= q, λi ≥ 0, i ∈ I (x̄), λi = 0, i �∈ I (x̄), µr ∈ R, r ∈ P which satisfy

0 ∈
∑

j∈M, j �=q

τ j∂
◦ f j (x̄) +

∑

i∈K

λi∂
◦gi (x̄) +

∑

r∈P

µr∂
◦hr (x̄),

are τ j = 0, for all j ∈ M, j �= q, λi = 0 for all i ∈ K and µr = 0 for all r ∈ P .
This clearly shows that τq > 0 and we can consider τq = 1 and thus Eq(x̄) �= ∅. Further
we claim that Eq(x̄) is bounded. On the contrary let us assume that the Eq(x̄) is unbounded.
Then we have a sequence of vectors {θs}, with θs ∈ Eq(x̄) of the form

θs = (τ s
1 , . . . , τ s

q−1, 1, τ s
q+1, . . . , τ

s
m, λs

1, . . . , λ
s
k, µ

s
1, . . . , µ

s
p)

with ‖θs‖ → +∞ as s → +∞. Thus from (6) we have

0 ∈ ∂◦ fq(x̄) +
∑

j∈M, j �=q

τ s
j ∂

◦ f j (x̄) +
∑

i∈K

λs
i ∂

◦gi (x̄) +
∑

r∈P

µs
r∂

◦hr (x̄).

Consider the sequence ws = θs

‖θs‖ . Thus we have

0 ∈ 1

‖θs‖∂◦ fq(x̄) +
∑

j∈M, j �=q

τ s
j

‖θs‖∂◦ f j (x̄) +
∑

i∈K

λs
i

‖θs‖∂◦gi (x̄) +
∑

r∈P

µs
r

‖θs‖∂◦hr (x̄).

Since {ws} is a bounded sequence there exists a convergent subsequence which converges
to say w∗ �= 0. Then noting that the Clarke subdifferentials are compact sets we have in the
limit

0 ∈
∑

j∈M, j �=q

τ ∗
j ∂

◦ f j (x̄) +
∑

i∈K

λ∗
i ∂

◦gi (x̄) +
∑

r∈P

µ∗
r ∂◦hr (x̄)

and we also have

w∗ = (τ ∗
1 , . . . , τ ∗

q−1, 0, τ ∗
q+1, . . . , τ

∗
m, λ∗

1, . . . , λ
∗
k , µ

∗
1, . . . , µ

∗
p).

This is clearly a contradiction to the fact that BRC holds with respect to the index q. Hence
the result.
Let us now illustrate the above theorem through the following example

Example 3.2 Consider the following vector optimization problem,

min( f1(x), f2(x)), subject to g(x) ≤ 0, h(x) = 0,

where f1, f2, g and h are real-valued functions on R
2 and are defined as follows.

f1(x1, x2) = x1 + x2,

f2(x1, x2) =
{

x1 + x2
2 : x1 + x2 ≥ 0,

0 : x1 + x2 < 0.

g(x1, x2) = −1 − x1

and

h(x1, x2) =
{

x1 + 1
2 x2 : x1 ≥ 0,

x1 + x2
2 : x1 < 0.
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The point x̄ = (0, 0) is a weak Pareto minimum for the above problem but not a Pareto
minimum. The Clarke subdifferential of the functions associated with the above problem is
as follows

∂◦ f1(0, 0) = {(1, 1)},
∂◦ f2(0, 0) = {(ξ1, ξ2) : 0 ≤ ξ1 ≤ 1, ξ2 = 0},
∂◦g(0, 0) = {(−1, 0)},
∂◦h(0, 0) = {(ξ1, ξ2) : ξ1 = 1, 0 ≤ ξ2 ≤ 1

2 }.
Let us first show that BRC holds at x̄ = (0, 0). Consider the index j = 2. Observe that g is
inactive at (0, 0). Then the following expression

0 ∈ τ1∂
◦ f1(0, 0) + µ∂◦h(0, 0), τ1 ≥ 0,

only holds for τ1 = 0 and µ = 0.
Further observe that the set of proper KKT multipliers E2((0, 0)) is given as

E2((0, 0)) =
⋃

0≤t≤1

{(τ1, 1, 0, µ) : 0 ≤ τ1 ≤ t,−2t ≤ µ ≤ −t}.

Thus it is clear that for each (τ1, 1, 0, µ) ∈ E2((0, 0)) one has 0 ≤ τ1 ≤ 1 and −2 ≤ µ ≤ 0.
Thus E2((0, 0)) is bounded.

Consider x̄ to be a Pareto minimum of the problem (VP) with locally Lipschitz data at
which BRC holds. Then by using the Chankong and Haimes [4] scalarization criteria and
Theorem 6.2.1 in Clarke [8] we can easily show the existence of proper KKT multipliers.
Then by using a similar approach as Theorem 3.1 we can establish the boundedness of a set
of proper KKT multipliers. This is summed up in the following theorem

Theorem 3.2 Let us consider the program (VP) with locally Lipschitz data. Assume that x̄
is a Pareto minimum of (VP). Further assume that BRC holds at x̄ . Then there exists a set of
proper KKT multipliers which is non-empty and bounded.

Remark 3.1 It is important to note that in order to prove the existence of proper KKT mul-
tipliers one can consider a condition which is weaker than BRC and even in the non-smooth
setting we shall refer to it as the Basic Constraint Qualification (BCQ). This is given as
follows. The problem (VP) is said to satisfy BCQ at x̄ if the only scalars λi ≥ 0, i ∈ I (x̄)

and µr , r ∈ P which satisfy

0 ∈
∑

i∈I (x̄)

λi∂
◦gi (x̄) +

∑

r∈P

µr∂
◦hr (x̄)

are λi = 0, i ∈ K and µr = 0, r ∈ P .

It is easy to check that in Example 3.1, BCQ holds at x̄ even though BRC fails to hold and
all the sets of proper KKT multipliers are unbounded. Thus BRC seems to take on a funda-
mental role in vector optimization since it appears to be the only condition which guarantees
the non-emptiness and boundedness of a set of proper KKT multipliers at the same time
irrespective of the fact whether the solution is a Pareto minimum or a weak Pareto minimum.
This role of BRC remains unchanged as we move from smooth to non-smooth optimization.
Further the importance of BRC mainly stems from the fact that it is an essential tool to
analyze even the weak Pareto optimal point for which there is no Chankong and Haimes [4]
type scalarization scheme in general.
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Remark 3.2 It is interesting to note that by using a scalarization scheme due to Charnes and
Cooper [6] recently Zlobec [24] has derived a necessary and sufficient optimality condition
for the existence of a Pareto minimum for the problem (VP) when (VP) is a non-smooth con-
vex vector optimization problem consisting of only inequality constraints (see [24] Chapter
6, Theorem 6.3). Zlobec [24] assumes that each component of the objective function and
the constraints which are active at the Pareto minimum point satisfies the locally flat surface
(LFS) property at the Pareto minimum point. For more details on the LFS property see [24].
The LFS property acts as a regularity condition in the case of a convex vector optimization.
However observe that in Theorem 6.3 in [24] one needs to assume the LFS property on all
the components of the objective function while for the BRC to hold we for the problem (VP)
we need m − 1 components of the objective function, i.e we need all the components of the
objective function except one.

The following theorem says that the failure of BRC will lead to the unboundedness of the
sets of proper KKT multipliers. The proof is simple and hence we omit that.

Theorem 3.3 Let us consider the program (VP) with locally Lipschitz data. Consider x̄ to
be a feasible point for (VP). Let there exist a non-empty and bounded set of proper KKT
multipliers at x̄ . Then (VP) satisfies BRC at x̄ .
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